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Multiple Zeta Values(MZV’s): classical setting

Zeta values

Let n ≥ 2 be an integer. The zeta value ζ(n) ∈ R is defined by

ζ(n) =
∞∑
k=1

1

kn
.

Even zeta values are known in terms of Bernoulli numbers,
ζ(2) = π2

6 , . . . , ζ(2n) = B2n
2(2n)!(2π)

2n. In particular, ζ(2n)
π2n ∈ Q.

Not much is known about odd zeta values; what we know is not
much more than the following theorems:

Theorem (Apéry, 1978): ζ(3) ̸∈ Q.
Theorem (Zudilin, 2001): {ζ(5), ζ(7), ζ(9), ζ(11)} ̸⊂ Q.
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Multiple Zeta Values(MZV’s): classical setting

Multiple Zeta Values (MZV’s) generalize the zeta values.

Multiple Zeta Values

Let n1, . . . , nr−1 ≥ 1, nr ≥ 2 be integers.

ζ(n1, . . . , nr ) :=
∑

0<k1<···<kr

1

kn1
1 . . . knrr

∈ R.

The weight and depth of the presentation ζ(n1, . . . , nr ) are
n1 + · · ·+ nr and r , respectively. For example, ζ(4, 3) has weight 7
and depth 2.

MZV’s are first introduced by Euler (as double zeta values) in 18c
and Zagier in early 1990’s.
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Multiple Zeta Values(MZV’s): classical setting

Let Z the Q-vector space spanned by all MZV’s, and Zw be the
Q-vector space spanned by the MZV’s of weight w . (We let
Z0 = Q, Z1 = {0}.)

It is known that the product of two MZV’s can be written as a
Q-linear combinations of MZV’s. For example,

Theorem (Euler, 1776.)

For n,m > 1, ζ(n)ζ(m) = ζ(n +m) + ζ(n,m) + ζ(m, n).

This turns the vector space Z into an algebra, and the linear
relations of MZV’s are to be studied.
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Multiple Zeta Values(MZV’s): classical setting

Zagier-Hoffman Conjectures

(Zagier’s conjecture) Let (dn)n≥0 be a sequence with
(d0, d1, d2) = (1, 0, 1) and dn = dn−3 + dn−2 for n ≥ 3. Then

dimQZw = dw for all w ≥ 0.

(Hoffman’s conjecture) Further, and Zw is spanned by

{ζ(k1, . . . , kr ) : k1 + · · ·+ kr = w , 2 ≤ ki ≤ 3}.

Example. Zagier’s conjecture implies ζ(1, 2)/ζ(3) ∈ Q. Indeed,
ζ(1, 2) = ζ(3).
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MZV’s in positive characteristics

Now we define MZV’s in positive characteristics. Let

Fq be a finite field of q elements with characteristic p > 0,

A = Fq[θ], A+ the set of monic polynomials in A,

K = Fq(θ), K∞ be the completion of K at ∞.

MZV’s in positive characteristics (Carlitz 1935, Thakur 2004)

Let s1, . . . , sr ≥ 1 be integers. The MZV in positive characteristics is
defined by

ζA(s1, . . . , sr ) :=
∑ 1

as11 . . . asrr
∈ K∞

where the sum is over a1, . . . , ar ∈ A+ and deg(a1) > · · · > deg(ar ).
In this presentation, weight and depth are s1 + · · ·+ sr and r , resp.

From now on, we denote Zw the K -vector space spanned by
MZV’s of weight w . (so please forget the classical MZV’s)
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Zagier-Hoffman conjectures in positive characteristics

Zagier-Hoffman conjectures were proved in positive characteristic
case.

Zagier-Hoffman conj. in pos. char. (Im-K.-Le-Ngo Dac-Pham)

Let (dn)n≥0 be a sequence with d0 = 1, dw = 2w−1 for 1 ≤ w < q,
dq = 2q−1 − 1, and d(w) =

∑q
i=1 d(w − i) for w > q. Then,

dimK Zw = dw for all w ≥ 0.

Further, we can exhibit a Hoffman-like basis of Zw .

This was proved for w < 2q − 1 by Ngo Dac, and for all w by
Im-K.-Le-Ngo Dac-Pham. (Also, by Chang-Chen-Mishiba
independently).
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Composition space and shuffle product

Let

Σ = {xn}n∈N be a set of ‘letters’,

⟨Σ⟩ = {xn1 . . . xnr : xni ∈ Σ for r ≥ 0} be set of ‘words’ over Σ
with the empty word denoted by 1,

C = Fq⟨Σ⟩ be the Fq-vector space with basis ⟨Σ⟩, endowed
with the concatenation product · (which can be omitted)

(xn1 . . . xnr ) · (xm1 . . . xms ) = xn1 . . . xnr xm1 . . . xms .

The weight and depth of xn1 . . . xnr are n1 + · · ·+ nr and r , resp.
For each nonempty a ∈ ⟨Σ⟩, we can write a = xa · a−.

Later, we identify ζA(n1, . . . , nr ) and xn1 . . . xnr .
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Composition space and shuffle product

There is the notion of shuffle product in C defined by Chen’s identity:
u� 1 = 1� u = u for u ∈ ⟨Σ⟩, and for nontrivial a and b

a� b := xa(a− � b) + xb(a� b−) + xa+b(a− � b−)

+
∑

0<j<a+b

∆j
a,bxa+b−j · (xj � (a− � b−)).

Here ∆j
a,b = (−1)a−1

(
j−1
a−1

)
+ (−1)b−1

(
j−1
b−1

)
∈ Fq when (q − 1) | j , and

∆j
a,b = 0 otherwise.

N.B. the Chen’s identity (of depth one version),

ζA(a)ζA(b) = ζA(a, b) + ζA(b, a) + ζA(a+ b) +
∑

0<j<a+b

∆j
a,bζA(a+ b − j , j) ;

� in C is defined to satisfy ζ(a� b) = ζ(a)× ζ(b) ∈ K∞ when we
identify ζ(xn1 . . . xnr ) and ζA(n1, . . . , nr ).

Note that � preserves the weight; i.e. w(a� b) = w(a) + w(b).
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Hopf algebra

In her thesis, Shuhui Shi (2015) proposed that the MZV’s in
positive characteristics have a Hopf algebra structure with the
shuffle product � and the coproduct ∆Shi (which will be defined
later).

Before proceeding ahead, we introduce a brief notion of Hopf
algebra.
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(But what is Hopf algebra?)

Hopf algebra is an algebraic structure arising in many areas of
mathematics, including algebraic topology, representation theory,
and combinatorics.

A bialgebra over a field k is a k-vector space which is both
(co)unital (co)associative algebra and coalgebra, with
compatibilities between two structures.
In other words, it is a quintuple (A,M, u,∆, ϵ), where

A is a k-vector space,

M : A⊗ A → A the product; we write M(a, b) = a ∗ b,
u : k → A the unit map,

∆: A → A⊗ A the coproduct, and

ϵ : A → k the counit map (or augmentation map),

with the following properties (next slide).
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(But what is Hopf algebra?)

Bialgebra axioms are as follows:

associativity, M ◦ (M ⊗ id) = M ◦ (id⊗M), i.e.
(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ A,

unitary property, i.e. there exist I ∈ A with I ∗ a = a ∗ I = a. The
unit map will be given as u(f ) = f · I ,

coassociativity, (id⊗∆) ◦∆ = (∆⊗ id) ◦∆

counitary, (ϵ⊗ id) ◦∆ = (id⊗ϵ) ◦∆ = id; This can be understood
as the counit map ϵ collapses (or ‘undo’) the extra structure from
the coproduct ∆ on the both sides and recover the original element.

compatibilities for M and ∆, u and ∆, M and ϵ, and u and ϵ. i.e.
∆(a ∗ b) = ∆(a) ∗∆(b), ∆(I ) = I ⊗ I (where I = u(1)),
ϵ(a ∗ b) = ϵ(a)ϵ(b), and ϵ(I ) = 1.

(In A⊗ A, (a1 ⊗ a2) ∗ (b1 ⊗ b2) := (a1 ∗ b1)⊗ (a2 ∗ b2).)
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(But what is Hopf algebra?)

A bialgebra (A,M, u,∆, ϵ) is said to be a Hopf algebra if the
antipode map S : A → A exists, satisfying the following
commutative diagram:

A⊗ A A⊗ A

A k A

A⊗ A A⊗ A

S⊗idA

M∆

ϵ

∆

u

idA ⊗S
M

(S can be understood as an ‘inverse element’ of idA : A → A in
Hom(A,A) wrt. the convolution product f ⋆ g := M ◦ (f ⊗ g) ◦∆.)
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Example of Hopf algebra: Group algebra

Let k a field and G be a (finite) group, and kG be the group
algebra. Then kG is a Hopf algebra with the following structure:

∆(g) = g ⊗ g ,

u(a) = a1G ,

ϵ(g) = 1k , and

S(g) = g−1 for all g ∈ G .
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Example of Hopf algebra: Shuffle algebra

Let k a field and Σ = {xn}n∈N.
Let ⟨Σ⟩ = {xn1 . . . xnr : xni ∈ X for r ≥ 0} be the set of words over
X with the empty word 1 and the concatenation ‘·’.
Let S = k⟨X ⟩ be the k-vector space with basis ⟨X ⟩, endowed with
the shuffle product ∗ defined as

1 ∗ w = w ∗ 1 = w (∀w ∈ ⟨X ⟩),
(xaa−) ∗ (xbb−) = xa · (a− ∗ b) + xb · (a ∗ b−).

Then S is a Hopf algebra with the ‘de-concatenation’ coproduct

∆deconcat(w) :=
∑
uv=w

u ⊗ v ,

e.g. ∆deconcat(xyz) = 1 ⊗ xyz + x ⊗ yz + xy ⊗ z + xyz ⊗ 1.
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Hopf algebra structure of MZV’s in positive characteristics

Shi (2015) suggested the definition of coproduct ∆Shi compatible
to the shuffle product � in C.
She then proved that C has a Hopf algebra structure, under the
assumptions of (1) the associativity of �, (2) the coassociativity of
∆Shi , and (3) the compatibility of � and ∆Shi .

We (Im-Kim-Le-Ngo Dac-Pham, 2023) proved that C is indeed a
Hopf algebra with � and ∆Shi .
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Shi’s construction of the coproduct

Shi gave the inductive definition of the coproduct ∆Shi on C.

∆Shi (1) := 1 ⊗ 1, ∆Shi (x1) := 1 ⊗ x1 + x1 ⊗ 1. (initial cases)

Now assume that we’ve defined all ∆(u) of weight(u) < w . First, for a
word a = xaa− with weight w and depth > 1 with

∆Shi (xa) =: 1 ⊗ xa +
∑

a1 ⊗ a2,

∆Shi (a−) =:
∑

u1 ⊗ u2, (known by the induction hypothesis)

Shi defined

∆Shi (xaa−) := 1 ⊗ a+
∑

(a1 · u1)⊗ (a2 � u2).

Finally, Shi defined ∆Shi (xw ) to satisfy

∆Shi (x1 � xw−1) = ∆Shi (x1)�∆Shi (xw−1).

Note that x1 � xw−1 = xw + (other terms); the coproduct of all other
terms are known in this step.
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Our construction of the coproduct

We introduce a different definition of coproduct ∆ on C.
We first define ▷ on C recursively. As initial cases we let

1 ▷ u := u =: u ▷ 1 for all u.

For nontrivial word a = xaa−, we define

a ▷ b := xa · (a− � b).

N.B. xa ▷ u = xa · u, but u ▷ v ̸= u · v, and ▷ is not commutative nor
associative in general.

Construction of ∆ is then similar to ∆Shi , but the concatenation in

∆Shi (xaa−) := 1 ⊗ a+
∑

(a1 · u1)⊗ (a2 � u2)

is replaced by the triangle product, i.e.,

∆(xaa−) := 1 ⊗ a+
∑

(a1 ▷ u1)⊗ (a2 � u2).



Introduction Hopf algebra structure of MZV’s in pos. char. Ideas and Strategies Remarks

Our construction of the coproduct

We introduce a different definition of coproduct ∆ on C.
We first define ▷ on C recursively. As initial cases we let

1 ▷ u := u =: u ▷ 1 for all u.

For nontrivial word a = xaa−, we define

a ▷ b := xa · (a− � b).

N.B. xa ▷ u = xa · u, but u ▷ v ̸= u · v, and ▷ is not commutative nor
associative in general.

Construction of ∆ is then similar to ∆Shi , but the concatenation in

∆Shi (xaa−) := 1 ⊗ a+
∑

(a1 · u1)⊗ (a2 � u2)

is replaced by the triangle product, i.e.,

∆(xaa−) := 1 ⊗ a+
∑

(a1 ▷ u1)⊗ (a2 � u2).



Introduction Hopf algebra structure of MZV’s in pos. char. Ideas and Strategies Remarks

Our construction of the coproduct

Now we have two questions:
(Q1) Is it true that ∆ = ∆Shi?
(Q2) Does ∆ satisfy the Hopf algebra axioms?

We proved that � is associative, and ∆ satisfies the compatibility
and coassociativity and properties, i.e.

(a� b)� c = a� (b� c),

∆(u)�∆(v) = ∆(u� v), (id⊗∆) ◦∆ = (∆⊗ id) ◦∆.

Also, we proved that ∆(xn) =
∑

u⊗ v satisfies the condition
depth(u) ≤ 1 for all n ≥ 1.

With this we first answer (Q1), and then according to Shi’s proof of
the remaining Hopf algebra axioms for ∆Shi = ∆, we answer (Q2).
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Algebra structure (Associativity of �)

Theorem.

� is associative.
In particular, the space (C,�) is commutative Fq-algebra with
algebra homomorphism Z� : K ⊗Fq C → Z given by a 7→ ζA(a).

The proof relies on huge amount of technical calculation. One of
the key fact is

Lemma (Partial Fractions)

Let r , s ∈ Z≥1. As rational functions in Q(X ,Y ),

1

X rY s
=

∑
i+j=r+s
i ,j∈Z≥0

((
j − 1

s − 1

)
1

X i (X + Y )j
+

(
j − 1

r − 1

)
1

Y i (X + Y )j

)
.

This is the fact which Chen used to find the coefficients ∆j
a,b.
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Algebra structure (Associativity of �)

Let r , s, t ≥ 1. We expanded two different partial fractions for

1

ArBs
· 1

C t
=

1

Ar
· 1

BsC t
.

For each d ∈ Z≥1, we partitioned the indices (a, b, c) ∈ A3
+(d) into

M0 = {(a, b, c) : a = b = c},
M1 = {(a, b, c) : only two are the same} and
M2 = {(a, b, c) : a ̸= b ̸= c ̸= a} which is partitioned further into

N0 with b − a = λf , c − a = µf , and λ ̸= µ,

N1 with b − a = λf , c − a = µu,

N2 with b − a = µu, c − a = λf ,

N3 with b − a = λf , c − a = λf + µu,

N4 with b − a = λf , c − a = µf + ηu, and λ ̸= µ,

for some λ, µ, η ∈ F×
q and f , u ∈ A+ with deg(u) < deg(f ) < d .
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Algebra structure (Associativity of �)

By calculating and comparing the sums
∑ 1

arbs ·
1
ct and

∑ 1
ar ·

1
bsct

over each partition, we deduce that the sums over

M0 induce the same expression of depth one MZV’s,

M1 ⊔ N0 induce the same expression of depth two MZV’s, and

N1 ⊔ N2 ⊔ N3 ⊔ N4 induce the same expression of depth three
MZV’s

of the associativity equation

(ζA(r)ζA(s))ζA(t) = ζA(r)(ζA(s)ζA(t))

in terms of power sums, which is translated into the associativity
of � in C.
For general case we can proceed with the induction on the sum of
depths.
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Algebra structure (Associativity of �)

Example. Let q = 3. Chen’s identity yields

ζA(1) · ζA(1) = 2ζA(1, 1) + ζA(2).

This is not only true as values in K∞, but also gives the equality of
the elements in C, i.e.

x1 � x1 = 2x1x1 + x2.

By applying the Chen’s identity again, we have

(ζA(1) · ζA(1)) · ζA(2) = 2ζA(1, 1, 2) + 2ζA(1, 2, 1) + 2ζA(1, 3)

+ 2ζA(2, 1, 1) + 2ζA(3, 1) + ζA(4)

yields (x1 � x1)� x2 = 2x1x1x2 + 2x1x2x1 + · · ·+ 2x3x1 + x4.

Further, as the expression calculated by Chen’s identity for
ζA(1) · (ζA(1) · ζA(2)) is the same as the above, then we conclude
that (x1 � x1)� x2 = x1 � (x1 � x2).
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Hopf algebra structure (Axioms for coproduct ∆)

Recall 1 ▷ a = a ▷ 1 = a, and a ▷ b = xa · (a− � b) for nonempty a.
We define ⋄ on C with 1 ⋄ a = a ⋄ 1 = a, and for nonempty a and b,

a ⋄ b := xa+b(a− � b−) +
∑

0<j<a+b

∆j
a,b · ((a− � b−)� xj).

By introducing the new operators ⋄ and ▷ and the new definition
for ∆ (and another huge amount of calculations), we could prove
the compatibility and coassociativity results. Some key lemmas
follow.

Lemmas

a� b = a ⋄ b+ a ▷ b+ b ▷ a (Definition),

a ⋄ b = (xa ⋄ xb) ▷ (a− � b−),

(∆(u)− 1 ⊗ u) ▷∆(v) = ∆(u ▷ v)− 1 ⊗ (u ▷ v), when
(u1 ⊗ u2) ▷ (v1 ⊗ v2) := (u1 ▷ v1)⊗ (u2 � v2).
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Hopf algebra structure (Comparison to ∆Shi)

(Q1) is remaining: ∆ = ∆Shi?

We introduce braket operator, [1] = 1 and

[xn1 . . . xnr ] :=
(
(−1)r ·∆n1

1,w+1 . . .∆
nr
1,w+1

)
(xn1 � . . .� xnr ) .

N.B. [u] = 0 if (q − 1) ∤ weight(u), [a · b] := [a]� [b].

Proposition

∆(xn) = 1 ⊗ xn +
∑

r∈Z≥1,a∈⟨Σ⟩
r+w(a)=n

(
r + depth(a)− 2

depth(a)

)
xr ⊗ [a],

in particular, ∆(xn) = 1⊗ xn +
∑

u⊗ v with depth(u) = 1 for all n.

Proposition

We have ∆ = ∆Shi .
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Hopf algebra structure

Theorem (Im-K.-Le-Ngo Dac-Pham)

(C,�, u,∆, ϵ) is a connected graded Hopf algebra of finite type
over Fq.
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Remark on the coproduct of letters

We also found some explicit formulae for ∆(xn).

Proposition

When n ≤ q, ∆(xn) = 1 ⊗ xn + xn ⊗ 1.
When q < n ≤ q2,

∆(xn) = 1⊗ xn + xn ⊗ 1+
k∑

i=1

(−1)i
(
n − 1 + i

i

)
xn−i(q−1) ⊗ xi(q−1)

when k is integer with kq < n ≤ (k + 1)q.

You can find the numerical results for ∆(xn) for n ≤ q3 + q2 and
q = 3, 5 cases in our paper.
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Remark on the stuffle Hopf algebra structure

Instead of � we can define the stuffle product ∗ as

1 ∗ a = a ∗ 1 = a for all a,

a ∗ b = xa(a− ∗ b) + xb(a ∗ b−) + xa+b(a− ∗ b−) for nontrivial a, b.

Theorem

C with ∗ and coproduct ∆deconcat attains the connected graded
Hopf algebra of finite type over Fq.

N.B. As stuffle algebra, Z∗ : C⊗Fq K → Z; a 7→ Li(a) is K -algebra
homomorphism, where Li is the Carlitz multiple polylogarithms
which spans the same space as the MZV’s.
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Remark on the Alternating MZV’s

Finally we remark that the Hopf algebra structure of the
alternating MZV’s (abbreviated as AMZV’s) in positive
characteristics is also proved in (Im-Kim-Le-Ngo Dac-Pham
2023a), where AMZV’s are defined (Harada, 2021) as

ζA

(
ε1 . . . εr
s1 . . . sr

)
:=

∑ εdeg a1
1 . . . εdeg arr

as11 . . . asrr

for positive integers si ’s and εi ∈ F×
q , where the sum is over all

monic polynomials ai ’s with deg(a1) > · · · > deg(ar ), with the
similarly defined shuffle product and coproduct.
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Thank you for your attention!

Thank you for your attention!
Questions are welcome!
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